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Efficient Circular Thresholding
Yu-Kun Lai and Paul L. Rosin

Abstract—Otsu’s algorithm for thresholding images is widely used, and the computational complexity of determining the
threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather
than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to
determine the optimal threshold inO(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches
for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular
thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor
image classification and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture
features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 dataset, outperforming
the state-of-the-art result by 4.3%.

Index Terms—circular histograms, thresholding, classification, segmentation
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1 INTRODUCTION

O VER the last few decades many image threshold-
ing algorithms have been proposed. These can

be categorised into histogram shape based, clustering
based, entropy based, object attribute based, spatial
methods and local methods [1]. In 1979 Nobuyuki
Otsu published a clustering based method for thresh-
olding images that has become well known and
widely used [2]. A few examples of applications using
Otsu’s method involve thresholding images contain-
ing: ice-covered cables [3], gas oil flow [4], sand-dust
storms [5], lung CT images [6], palm prints [7], and ve-
hicle paths [8]. Otsu proposed selecting the threshold
that maximises any of the three discriminant criteria:
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where σ2
W , σ2

B and σ2
T are the within-class, between-

class, and total variances, and showed that all three
criteria will produce the same threshold. Moreover,
since σ2

T is independent of the threshold, then σ2
B and

1/σ2
W can also be used as equivalent criteria.

Compared to thresholding, more general and more
powerful image segmentation algorithms have been
developed. However, global thresholding algorithms
like Otsu’s continue to be widely used since they are
well founded, simple, efficient, stable, parameter free
and sufficient for many applications. Also, if more
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adaptive segmentation is required, then it is standard
practice to modify global thresholding algorithms to
operate locally.

Subsequent work has developed and extended
Otsu’s algorithm in various ways such as: application
to multidimensional (colour) images [9], [10], applica-
tion to circular histograms [11], [12], [13], expansion
of the 1D intensity histogram to higher dimensions
to include neighbourhood intensity information [14],
[15], application to recursive thresholding [16], and
improvements in computational efficiency for multi-
ple thresholds [17], [18], [19].

This paper considers thresholding images that con-
tain circular or cyclic values, which can arise from an-
gular data, hue values, temporal data, etc. An example
is shown in figure 1, comparing thresholding hue
histograms as a linear or a circular histogram. Due
to the circular nature of hues, circular thresholding
gives a more consistent result regarding the content
(aeroplane etc.) in the image.

There is little previous literature on thresholding
circular histograms. Some examples are given in [11],
[12], [13] which threshold hue images for segmenting
faces, blood cells, etc. However, Tseng et al. [11] and
Wu et al. [12] each describe algorithms that are both
iterative and non-optimal. Dimov and Laskov [13]
describe an optimal algorithm, but its computational
complexity for binary thresholding is O(N2) where N
is the number of histogram bins, unlike the algorithm
proposed in this paper which is also optimal but only
has O(N) complexity. In this paper we demonstrate
the usefulness of the new circular thresholding algo-
rithm for various applications, and also show how the
Otsu discriminant criterion can be used effectively for
classification.
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(a) (b) (c) (d) (e)

Fig. 1. Image thresholding based on hue histogram as linear or circular histogram. (a) input image; (b) two-
class linear histogram; (c) two-class circular histogram; (d) three-class linear histogram; (e) three-class circular
histogram.

2 CIRCULAR THRESHOLDING
We consider two methods for adapting the stan-
dard Otsu thresholding algorithm to perform circular
thresholding. The first rotates the histogram appro-
priately, and then applies linear statistics, while the
second simply replaces linear statistics with circular
statistics for the computation of the discriminant cri-
terion. We start our discussion with traditional two-
class thresholding due to its wide applicability, and
then discuss multi-class thresholding.

2.1 Thresholding using linear statistics
The thresholding process partitions the circular his-
togram into two portions. Within each portion, by
properly rotating the histogram, the linear statistics
still apply. So the first approach rotates the histogram
so as to consider all possible starting positions, and
then continues to use linear statistics for each ro-
tated histogram. The starting position and associated
threshold that optimises the discriminant criterion is
selected.

Unlike linear histogram thresholding, rotating the
histogram will alter σ2

T . However, once a partition is
given, the circular histogram can always be rotated to
obtain a linear histogram with the starting position of
one portion aligned with the starting position of the
linearised histogram and following [2], the identity
σ2
T = σ2

W + σ2
B still holds for any partition. Thus both
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three discriminant criteria lead to identical optima.
In the linear histogram case, optimising σ2

B

σ2
W

is also
identical to optimising σ2

W and σ2
B since σ2

T is constant
for a linear histogram. In the circular histogram case,
however the thresholds that optimise the criteria in
equation (1) are generally different from σ2

W and σ2
B .

Experimentally we found that σ2
W gives better results

as demonstrated by both synthetic (but representa-
tive) distributions and a dataset with ground truth
(see section 4.1). Also, σ2

W has the advantage of easier
generalisation to multi-class thresholding; details will
be given in section 2.3. We thus generalise σ2

W (as one
of the equivalent criteria in the linear case from Otsu’s
approach) to circular thresholding.

To find the two-class partitioning for a circular
histogram, two thresholds are needed. The first is
used to choose an appropriate starting point of the
rotation and with each potential starting point an-
other threshold needs to be determined to find two
portions. Computing the Otsu criterion for a linear
histogram has O(N) complexity, where N is the num-
ber of histogram bins. This requires some appropriate
incremental update to be used such that the statis-
tics for a single partition can be computed in O(1)
amortised time. The direct extension of this approach
to a circular histogram however takes O(N2) time as
two thresholds instead of one are needed. However,
we found that an optimal partition based on linear
Otsu statistics always segments the histogram into
two equal halves. By using this property, only one
threshold needs to be determined, and linear time can
still be achieved.

Consider a circular histogram with elements in-
dexed from 1 to N with p(x) representing the prob-
ability at x. Elements N and 1 are also adjacent. A
portion of a circular histogram from element i to
element j (both inclusive) is denoted as i..j. If i is
larger than j, this is equivalent to i..N

⋃
1..j. We

further define the circular sum
∑̊j

x=i as
∑j
x=i if i ≤ j

and
∑N
x=i +

∑j
x=1 otherwise. We also define circular

difference w.r.t. a starting position i as a−̊b = (a − i)
mod N − (b − i) mod N , where p mod q gives a
non-negative integer that has the remainder as p
divided by q. This can be considered as measuring
the difference after rotating the histogram such that i
becomes the first element. The following theorem and
corollaries ensure optimality of the efficient algorithm
(see Appendix for proofs).

Theorem 2.1. For a circular histogram of length N = 2n,
applying the two-class Otsu criterion (σ2

W ) using linear
statistics extending to circular histograms, assume the best
answer is i..j−1, j..i−1. Then, there exists a best solution,
such that |j−̊i| = n. (Note that the starting position for −̊
in this case does not matter as the distance happens to be
half of N .)

Corollary 2.2. If p(x) > 0,∀x, then the unique best
solution has each segment containing n elements.

Corollary 2.3. If the length of the histogram N = 2n+ 1,
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then there exists a best solution such that one segment
contains n elements and the other contains n+1 elements.
Moreover, if p(x) > 0,∀x, then the unique best solution
satisfies that one segment has n elements and the other has
n+ 1 elements.

The theorem and corollaries show that an optimal
solution to the two-class Otsu criterion (σ2

W ) using
linear statistics for any histogram splits the histogram
into two halves (if N is even) or has one portion
containing one more element than the other (if N
is odd). Further if all the bins are positive, then the
unique solution satisfies this property. We can then
give a simple algorithm that finds the optimal thresh-
olds efficiently. Based on the theorem and symmetry,
only the first N (if odd) or N

2 (if even) elements
need to be attempted as a starting point (i) and with
appropriate accumulation to calculate sums in O(1)
amortised time, the algorithm is O(N) after obtaining
the histogram, instead of O(N2), which allows real-
time applications. Detailed running times are reported
in section 4.6.

It has been shown that Otsu’s criterion is equiv-
alent to the maximization of the likelihood of the
class distributions assuming each class has a normal
distribution and the same variance [20]. Of course,
an equal division of the intensity range may not
always be ideal. For instance, in the simple synthetic
example in figure 2a which contains two classes of
equal size with normal distributions, choosing one of
the optimal thresholds at a point of equal error rate
yields a threshold of 185 instead of the 158 produced
by Otsu’s criterion applied to the circular histogram.
Nevertheless, this is a limitation of the basic criterion
rather than its adaptation to a circular version, since
applying Otsu’s algorithm to a non-circular histogram
produces the almost identical result (156). In such
cases it would be possible to modify Otsu’s criterion
to cope with close to unimodal distributions [21].

2.2 Thresholding using circular statistics
Another approach to generalise the Otsu criterion to
circular histograms is to use circular statistics (mean,
variance and difference).

The circular mean µ of a set of n orientation samples
θx is defined as [22]:

µ =

 µ′ if S > 0 and C > 0
µ′ + π if C < 0
µ′ + 2π if S < 0 and C > 0

where

µ′ = tan−1
S

C
, C =

1

n

n∑
x=1

cos θx, S =
1

n

n∑
x=1

sin θx.

Also, the circular variance is calculated as σ = (1−R),
where R =

√
S2 + C2. Note that 0 ≤ σ ≤ 1.

For Otsu’s criterion, for a circular histogram with N
bins split into two portions i..j − 1 and j..i− 1 (both

inclusive), p(x) is the probability of the histogram at
x. Similar to the linear case, we have

ω1 =
∑̊j−1

x=i
p(x), ω2 =

∑̊i−1

x=j
p(x).

Starting from i, the numbers of elements for these
portions are n1 = |j−̊i|, n2 = N − n1. Extending the
circular statistics with probability p(x) as weights, and
choose θx = 2πx

N ,

C1 =
1

n1

∑̊j−1

x=i
p(x) cos θx, S1 =

1

n1

∑̊j−1

x=i
p(x) sin θx.

The means µ1, µ2 and variances σ2
1 , σ2

2 and the total
variance σ2

T are defined as before, with the weighted
S and C. Otsu’s criteria now become

σ2
W = ω1σ

2
1 + ω2σ

2
2 , σ2

B = ω1ω2(µ2 	 µ1)2,

where a 	 b = min(|a − b|, N − |a − b|). However in
general σ2

W + σ2
B 6= σ2

T , thus unlike the case with
linear statistics, optimising σ2

W , σ2
B and σ2

B

σ2
W

etc. are not
equivalent. Thus it does not have the nice property as
with linear statistics, and also Theorem 2.1 does not
hold for circular statistics. Therefore finding the opti-
mal solution requires brute force search taking O(N2)
time. We will show by experiments in section 4.2 that
linear statistics often give similar results to circular
statistics and thus we use linear statistics in most
experiments.

2.3 Multi-class thresholding

For certain applications, it is desirable to threshold
a circular histogram into multiple classes. Unfortu-
nately the theorem cannot be generalised to the multi-
class case and we follow the efficient SMAWK al-
gorithm [19]. For N bins and C classes, the linear
histogram thresholding takes O(CN) time, and the
optimal circular histogram thresholding can be found
by taking each element as the starting element, ro-
tating the histogram, and processing the result as a
linear histogram, leading to O(CN2) time. Note that
our two-class thresholding algorithm only takes O(N)
time, and is thus much more efficient than applying
this general multi-class approach directly to two-class.

3 APPLICATIONS

Circular thresholding has various applications, in par-
ticular where the distributions (histograms) are nat-
urally circular. By using the Otsu criterion, σ2

W can
also be obtained which provides further descriptive
features for applications such as classification. We
briefly describe three applications that benefit from
our circular thresholding.
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3.1 Analysis of optical flow data
Given a pair of images, optical flow algorithms
(e.g. [23]) produce a dense field of displacement vec-
tors showing the relationship between local regions
between images. When the optical flow vector direc-
tions are histogrammed, circular thresholding gives
reasonable separation of different directions. More
robust results can be obtained by combining circular
thresholding with the magnitude of vectors such that
only vectors of significant magnitudes are considered,
as these vectors are generally less sensitive to noise.

3.2 Indoor/outdoor image classification
Indoor/outdoor classification is a typical scene classi-
fication problem. Given an input image, the purpose
is to automatically identify whether the picture is
taken indoors or outdoors. Gupta et al. [24] used a
probabilistic neural network classifier applied to a
variety of colour, texture and shape image features.
They also tested Payne and Singh’s method [25] in
which a multiresolution estimate of edge straightness
is made. Classification is done by first dividing each
image into 16 equal sized windows [26]. Two schemes
are proposed for classifying a window: 1/ a pair of
thresholds [T1, T2] is learnt from the training set and
applied to edge straightness P so that

classification =

{
indoor if P > T2
outdoor if P < T1.

If P lies in [T1, T2] then the window is further sub-
divided into four, and each subwindow is classified.
The final classification is determined by the major-
ity window class label. 2/ Alternatively a k nearest
neighbour classifier is applied to edge straightness P .
Pillai et al. [27] used estimated depth information from
images as a feature for indoor/outdoor classification
as outdoor scenes tend to have more uniform depth
distribution. Three variants were proposed, based on
the histogram (3DH ), M ×M block average (3DB) as
well as average DCT coefficients of K×K overlapping
windows (3DD) of the logarithm of estimated rela-
tive depths. They also implemented various features
including the GIST descriptor [28], a combination of
seven features sets (colour distribution, entropy, DCT
etc.) [29], a combination of colour and wavelet [30],
the centrist descriptor [31] as well as combining these
features with 3D features. They used Support Vector
Machines (SVM) to train the model and applied it to
the test data.

Our scheme also uses a multiresolution approach,
and takes the original image plus versions blurred
by a Gaussian filter with σ = {1, 2, 4}, and then the
Sobel edge detector is applied. Following Gorkani and
Rosalind [26] and Payne and Singh [25] the images are
subdivided into 16 equal sized windows.

In each window the circular threshold was applied
to the edge orientations with the edge magnitudes

used as weights when constructing the histogram. The
within-class variance associated with the threshold
was used as a feature. More specifically, for each
image the 16 variance values generated from the
subwindows are sorted and concatenated to provide
a feature vector (which we call the Otsu features).
We also consider a standard colour histogram in hue,
saturation, value (HSV) space with 4× 4× 4 bins and
Haralick co-occurrence matrix texture features [32] in
both HSV colour space and grayscale intensity. For
classification we use an SVM with a Radial Basis
Function (RBF) kernel.

3.3 Non-photorealistic rendering
We will finally show the application of circular thresh-
olding to non-photorealistic rendering (NPR). The
monochrome method from [33] is adapted to produce
artistic colour renderings that both simplify the im-
age (by smoothing and thresholding) and retain and
enhance salient detail by overlaying both black and
white lines. The lines are extracted using the approach
by Kang et al. [34] that achieves highly coherent
lines by employing locally adaptive filter kernels.
Connected set morphology opening and closing oper-
ations [35] are applied to the lines to further enhance
their coherence. The image is converted into HSV
colour space, and each channel is blurred (Gaussian
kernel with σ = 8) to remove noise and simplify
subsequent regions. Note that since the hue channel
is circular it requires circular blurring.

Next, each of the HSV channels is thresholded into
C classes. For the value channel a standard (linear)
thresholding is performed. After thresholding, the
V = 0 pixels will be black, but due to the asymmetry
of HSV space, pixels with V = 1 will be coloured.
White only occurs if V = 1 and S = 0. Therefore, in
order to obtain a reasonable quantity of white pixels,
near zero saturation values (using a fixed threshold
of ST = 0.0625) are set to zero. The standard Otsu
algorithm is applied for the remaining C−1 saturation
classes. Hue is thresholded into C classes using the
circular version of the Otsu algorithm.

For the hue channel, pixels from each thresholded
class are recoloured with the mean value calculated
from the source hue pixels after masking out black
and white pixels. The value and saturation channels
are mapped to C values uniformly spread across the
full range (i.e. 0 and 1 for the two-class case) for
artistic effect so as to enhance colours and retain black
and white in the final output. Finally, the modified
HSV channels are recombined to form a base colour
image which is overlaid with the lines.

4 EXPERIMENTAL RESULTS AND DISCUS-
SIONS

Various experiments are performed to compare the
results with different (variations of) thresholding cri-
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teria and demonstrate the efficiency and effective-
ness of the proposed approach. The source code of
the circular thresholding algorithms is available at
http://users.cs.cf.ac.uk/Paul.Rosin/.

4.1 Comparison of different thresholding criteria

When generalising linear histogram thresholding to
circular thresholding using Otsu’s criteria, various
approaches are possible. We compare σ2

W , σ2
B and σ2

B

σ2
W

using linear statistics and on both synthetic distribu-
tions and dataset with ground truth.

We first use various synthetic but representative
distributions, as shown in figure 2. For the histograms
in figure 2a – figure 2c σ2

B performs the worst; in fig-
ure 2c and figure 2d σ2

W selects the most appropriate
thresholds. σ2

W consistently gives good results for all
these examples.
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Fig. 2. Various synthetic distributions showing the cir-
cular thresholds selected according to different criteria.
The solid line corresponds to any of the following: σ2

B

σ2
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,
σ2
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σ2
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, σ
2
B

σ2
T

; red dashed line: σ2
B ; blue dotted line: σ2

W .

TABLE 1
Evaluation of document binarization on DIBCO 2009

machine printed benchmark dataset using the
F-measure.

measure/image 1 2 3 4 5 mean
σ2
B

σ2
W

50.2 96.1 37.7 76.8 42.3 60.6

σ2
B 35.26 51.9 33.6 17.7 32.0 34.1

σ2
W 90.9 96.6 94.2 82.4 89.6 90.7

non-circular 90.9 96.6 96.7 82.6 89.6 91.3

We further compare various discriminant criteria
considered by Otsu, by thresholding the machine
printed benchmarking dataset provided at ICDAR
2009 for the Document Image Binarization Contest
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Fig. 3. Circular thresholding of images from DIBCO
2009 machine printed benchmark dataset. Column 1:
P01, column 2: P02, column 3: P03. Row 1: origi-
nal image, row 2: intensity histogram, row 3: circular
thresholding using σ2

B

σ2
W

, row 4: circular thresholding
using σ2

B , row 5: circular thresholding using σ2
W .

(DIBCO). The dataset contains 5 images of handwrit-
ten text and 5 images of printed text. We only use
the 5 printed text images in our experiments because
the handwritten text contains substantial degradation
such as show-through, and is thus not suitable for
global thresholding. Although these images do not
require circular thresholding they are useful since
they provide five images along with ground truth
thresholded versions. Table 1 shows the results of
thresholding, evaluated using the F-measure. The first
three rows are circular thresholding results, using
linear statistics. Since the circular thresholding can
result in inverted binary images compared to the
ground truth, the F-measure was also applied to the
inverted result and the larger score is listed for each
algorithm/image. It is clear that the σ2

W criterion is
substantially more reliable for circular thresholding
than the other criteria. Its results are comparable
with Otsu’s non-circular thresholding, in which one
threshold value (i.e. 0/256) is effectively provided in
advance. Some of the threshold results are presented
in figure 3. Note the different histogram shapes: al-
most unimodal, bimodal and trimodal.
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Fig. 4. Distribution of differences in thresholds se-
lected using linear versus circular statistics.
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Fig. 5. An example of an image in which the thresh-
olds selected by the algorithms using the linear (e)
and circular (f) statistics produce an unusually large
difference. The result using the standard (non circular
histogram) Otsu criterion is shown in (b). The image’s
intensity histogram is shown in (c), and the within class
variances as a function of threshold location are shown
in (d).

4.2 Comparison of linear vs. circular statistics

While either linear statistics or circular statistics can
be used in the discriminant criterion, the choice of
statistics has little effect on the thresholding. This is
demonstrated by showing the cumulative distribution
of the differences in the thresholds selected for 10,000
randomly selected flickr images (see figure 4). We
experiment on both intensity and hue histograms
because hue is naturally circular but JPEG uses higher
compression rates for the chromatic channels than for
intensity, leading to more significant artefacts in the
hue histogram. Within-class variance σ2

W is used for
thresholding with both linear and circular statistics.
For both intensity and hue histograms only a minority
of images have significant differences. An example of
such an extreme case is given in figure 5. From the

histogram it is evident that the discriminant criterion
calculated using circular statistics contains four local
minima of similar magnitude evenly spread across
the intensity range, all of which align closely with
the (also four) corresponding local minima in the
linear statistics plot. However, different global minima
are selected as the threshold, leading to the large
difference in results.

(a)

(b)

Fig. 6. Thresholding of optical flow data. a) pilgrims
sequence: two frames, angle and magnitude of flow
vectors, two classes after thresholding, flow vector
magnitudes colour coded according to class. b) Ham-
burg taxi sequence: two frames, angle and magnitude
of flow vectors, three classes after thresholding, flow
vector magnitudes colour coded according to class.

4.3 Analysis of optical flow data
Another illustrative example is given in figure 6 which
demonstrates the application of circular threshold-
ing to optical flow data derived from the pilgrims
sequence [36] and the standard Hamburg taxi se-
quence using the Lucas-Kanade algorithm [23]. Cir-
cular thresholding applied to the optical flow vector
directions can clearly separate objects with different
moving behaviour from the background, e.g. the three
cars.

4.4 Indoor/outdoor image classification
For the application of indoor/outdoor image classi-
fication, we use the IITM-SCID2 scene classification
image database [24] which has been constructed to
discriminate between indoor and outdoor scenes. It
contains 193/200 indoor/outdoor training images and
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(a) (b) (c) (d) (e)

Fig. 7. Image thresholding based of hue histogram as linear or circular histogram. (a) input image; (b) two-
class linear histogram; (c) two-class circular histogram; (d) three-class linear histogram; (e) three-class circular
histogram.

249/260 indoor/outdoor test images. In this applica-
tion, Otsu features (the within-class variance associ-
ated with the threshold) are used as a feature. We
use SVM with the Radial Basis Functions kernel. Grid
search and 5-fold cross validation in the training set
are used to obtain the optimised parameters and the
model is then applied to the test data. Default settings
of LIBSVM [37] are used for this experiment. We
compare our approach with state-of-the-art methods.
The results are listed in table 2; we include individual
features and the best combinations reported in the lit-
erature for comparison. Using the Otsu features alone,
a moderate 81.1% correct rate is achieved overall.
Using standard colour histogram and Haralick tex-
ture features, 91.6% correct rate is obtained, which is
slightly below the best result reported in the literature
(centrist + 3DB with 92.6% correct rate). However, as
the Otsu features provide rather different information
from colour and texture, by combining them a 96.9%
correct rate can be achieved, which is 5.3% better
than using colour histogram and Haralick features
alone, and 4.3% better than the best result reported
in the previous literature. This test demonstrates the
potential of using Otsu circular thresholding for im-
age classification.

4.5 Application to non-photorealistic rendering

In the HSV colour model, hue is naturally circular.
Using a circular histogram exploits this property and
as shown in figures 1 and 7, circular thresholding of
hue histograms (c, e) tends to keep the major objects
(e.g. foreground/background) better separated and
produces more meaningful segmentation than linear
histograms (b, d).

TABLE 2
Indoor/outdoor classification accuracy

Methods Indoor Outdoor Total

shape [24] 63.5 66.5 65.0
colour [24] 94.0 53.5 73.3
texture [24] 94.0 86.9 90.4

colour + texture [24] 94.0 90.8 92.4
edge straightness (rule based) [25] 71.0 72.5 71.8

edge straightness (k-NN) [25] 65.6 66.5 66.1
3DB [27] 80.3 74.2 77.2
3DH [27] 63.5 78.8 71.3
3DD [27] 69.5 77.3 73.5
GIST [28] 84.7 85.2 85.0
Tao [29] 89.6 81.1 85.2

colour + wavelet [30] 87.1 83.7 85.4
centrist [31] 96.0 87.5 91.6

centrist + 3DB [27] 94.4 90.9 92.6

Otsu 80.7 81.5 81.1
colour histogram + Haralick 89.6 93.5 91.6

colour histogram + Haralick + Otsu 96.4 97.3 96.9

Colour channel thresholding is applied to non-
photorealistic rendering. Examples are shown in fig-
ure 8 where C = 2 and C = 3 are used for the second
and third columns. The obtained images are highly
stylised, emphasising the dominant colour and appear
aesthetically pleasing.

4.6 Running times

We compare the efficiency of our 2-class circular
thresholding algorithm with the brute force and gen-
eralised SMAWK implementations for typical bin
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Fig. 8. Non-photorealistic rendering using threshold-
ing. From left to right: input images, two-class thresh-
olding and three-class thresholding.

sizes N = 256 and N = 65, 536 on a computer with a
2.4 GHz Intel Core 2 Duo CPU. We run the algorithms
100 times and the average timing is reported. As
shown in Table 3, our algorithm is very efficient for
2-class thresholding. For the most typical case with
N = 256, over 300 times speedup over the brute
force and the generalised SMAWK algorithms (both
quadratic) is achieved. Moreover, some image sources
have N > 256 (e.g. for medical imaging DICOM
supports 16-bit data to enable differentiation of subtle
differences between tissues), while derived quantities
such as optical flow directions or hue can also be
quanitised to N > 256. For N = 65, 536, the algorithm
is more than 78, 000 times faster than both approaches
with quadratic complexity. Our algorithm does not
generalise to cases with more than 2 classes. For
such cases, the generalised SMAWK algorithm with
O(CN2) complexity is much faster than brute force
with O(NC) complexity.

5 CONCLUSION

In this paper we consider circular thresholding, and
propose an efficient algorithm for the common two-
class thresholding problem, based on the property
of the Otsu criterion for the circular cases. Circular
thresholding is particularly suitable for properties that
are naturally circular, such as hue, orientation etc.
and we demonstrate its usefulness by various applica-
tions including hue thresholding, optical flow vector
thresholding, indoor/outdoor classification and non-
photorealistic rendering.
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APPENDIX

We now give the proofs for the theorem and corollar-
ies that allow the efficient thresholding algorithm.

Lemma A.1. Consider a portion of a circular histogram
i..j (inclusive) with i ≤ j. The mean µ =

∑j
x=i xp(x)∑j
x=i p(x)

is the unique minimiser of
∑j
x=i p(x)(x − x∗)2, i.e. µ =

arg minx∗
∑j
x=i p(x)(x− x∗)2 (assuming

∑j
x=i p(x) 6= 0

otherwise the mean is undefined).

Proof: Let f(x∗) =
∑j
x=i p(x)(x − x∗)2, then the

minimum can be achieved with
∂f

∂x∗
= 0. (2)

This is equivalent to

2

j∑
x=i

p(x)(x∗ − x) = 0. (3)

j∑
x=i

p(x)x∗ =

j∑
x=i

xp(x) (4)

So

x∗ =

∑j
x=i xp(x)∑j
x=i p(x)

= µ. (5)

The lemma gives an essential property that the
mean of a histogram portion satisfies. The following
corollary further shows that the property can be gen-
eralised to arbitrary circular histogram portions.

Corollary A.2. Assume we define the circular sum
∑̊j

x=i

as
∑j
x=i if i ≤ j and

∑N
x=i +

∑j
x=1 otherwise. We also

define circular difference w.r.t. a starting position i as
a−̊b = (a− i) mod N−(b− i) mod N , where p mod q
gives a non-negative integer that has the remainder as
p divided by q. This can be considered as measuring the
difference after rotating the histogram such that i becomes
the first element. Then µ = arg minx∗

∑̊j

x=ip(x)(x−̊x∗)2
is well defined for general circular histogram portions and
is consistent with the mean of the linear histogram with
appropriate rotation and this is hereafter defined as the
mean of the circular histogram portion. If

∑̊j

x=ip(x) = 0,
any position x∗ in the portion can be treated as µ as it is a
minimiser of

∑̊j

x=ip(x)(x−̊x∗)2 and the following proofs
still hold.

Lemma A.3. Consider two adjacent portions of a circular
histogram i..j − 1 and j..k (both inclusive). Let µ1 be the
mean of i..j − 1 and µ2 be the mean of j..k. The total
within-class variance is defined as

σ2 =
∑̊j−1

x=i
p(x)(x−̊µ1)2 +

∑̊k

x=j
p(x)(x−̊µ2)2 (6)

Without loss of generality, assume |j−̊µ1| ≤ |µ2−̊j|. The
total within-class variance with a different thresholding i..j
and j + 1..k is represented as σ̄2. Then we have σ̄2 ≤ σ2.
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Fig. 9. Illustration for the proof of Theorem 2.1.

Proof: Let µ̄1 and µ̄2 represent the means of his-
togram portions i..j and j + 1..k, respectively.

σ̄2 =
∑̊j

x=i
p(x)(x−̊µ̄1)2 +

∑̊k

x=j+1
p(x)(x−̊µ̄2)2. (7)

Using Lemma A.1 and the assumption |j−̊µ1| ≤
|µ2−̊j|:

σ̄2 ≤
∑̊j

x=i
p(x)(x−̊µ1)2 +

∑̊k

x=j+1
p(x)(x−̊µ2)2

=
∑̊j−1

x=i
p(x)(x−̊µ1)2 + p(j)(j−̊µ1)2

+
∑̊k

x=j+1
p(x)(x−̊µ2)2

≤
∑̊j−1

x=i
p(x)(x−̊µ1)2 + p(j)(j−̊µ2)2

+
∑̊k

x=j+1
p(x)(x−̊µ2)2

=
∑̊j−1

x=i
p(x)(x−̊µ1)2 +

∑̊k

x=j
p(x)(x−̊µ2)2

= σ2. (8)

This lemma shows that for two adjacent circular
histogram problems, if the distance from the mean
of one portion to the shared end is smaller than the
distance from the mean of the other portion to the
shared end, then no worse solution can be obtained
by moving one element from the second portion to the
first. We obtain the similar conclusion in the opposite
scenario as the following corollary:

Corollary A.4. With the same assumption as Lemma A.3,
but change |j−̊µ1| ≤ |µ2−̊j| to |(j − 1)−̊µ1| ≥ |µ2−̊(j −
1)|, define σ̄2 as the total within-class variance of i..j − 2
and j − 1..k, then σ̄2 ≤ σ2.

The following lemma considers the necessary and
sufficient condition to have the mean unchanged

when a new element is added to the histogram por-
tion.

Lemma A.5. For a portion of histogram i..j+1 (inclusive),
the mean µi..j = µi..j+1 iff p(j + 1) = 0 (assuming∑̊j

x=ip(x) 6= 0 as otherwise µi..j is not well defined).

Proof: Since the mean of a circular portion rotates
along with the circular portion, it is sufficient to
show that this holds when the circular portion does
not cross the end of the linearised histogram. Using
Lemma A.1,

µi..j = µi..j+1

⇔
∑j
x=i xp(x)∑j
x=i p(x)

=

∑j
x=i xp(x) + (j + 1)p(j + 1)∑j

x=i p(x) + p(j + 1)

⇔ p(j + 1)

j∑
x=i

xp(x) = p(j + 1)(j + 1)

j∑
x=i

p(x).

(9)

The last equation holds when either p(j + 1) = 0 or∑j
x=i xp(x) = (j + 1)

∑j
x=i p(x). Since

∑j
x=i p(x) 6= 0,

∃x, p(x) > 0, so

p(j + 1)

j∑
x=i

xp(x) < p(j + 1)

j∑
x=i

(j + 1)p(x)

= p(j + 1)(j + 1)

j∑
x=i

p(x).(10)

Corollary A.6. If p(x) > 0,∀x, then µi..j 6= µi..j+1.

Corollary A.7. If p(x) > 0,∀x, in addition to the assump-
tions in Lemma A.3 (or Corollary A.4), then σ̄2 < σ2.

This shows the condition that the previous inequal-
ities are strictly satisfied. Based on the lemmas and
corollaries discussed so far, the following theorem
states the property that an optimal solution to the
circular thresholding based on σ2

W satisfies. This is
essential to the efficient algorithm.

Theorem 2.1. For a circular histogram of length N = 2n,
applying the two-class Otsu criterion (σ2

W ) using linear
statistics extending to circular histograms, assume the best
answer is i..j−1, j..i−1. Then, there exists a best solution,
such that |j−̊i| = n. (Note that the starting position for −̊
in this case does not matter as the distance happens to be
half of N .)

Proof: We treat i as the starting point for −̊ in the
following to avoid crossing the end. This is equivalent
to rotating the histogram such that it starts from i.

Let µ1 and µ2 be the means of circular portions i..j−
1 and j..i−1. If the best solution has |j−̊i| = n (i.e. two
portions each with n elements) then this is proved.

Otherwise, without loss of generality, assume
|j−̊i| ≤ n− 1, so j..i− 1 has at least n+ 1 elements.
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As illustrated in figure 9, let d1 = |µ1−̊(i− 1)|, d2 =
|j−̊µ1|, d3 = |µ2−̊j| and d4 = |(i − 1)−̊µ2|. If d2 ≤
d3 then according to Lemma A.3, a best solution can
be obtained by moving an element from j..i − 1 to
i..j − 1 thus reducing the length difference between
two segments.

Similarly if d1 ≤ d4, then a best solution can also
be obtained by moving an element from j..i − 1 to
i..j − 1 thus reducing the length difference between
two segments.

Otherwise, we have d1 + d2 > d3 + d4, however
d1 + d2 ≤ n and d3 + d4 ≥ n, so this is impossible.

So as long as |j−̊i| ≤ n − 1 holds, elements can be
kept moving from j..i − 1 to i..j − 1 until both have
the same number of elements.

The following corollaries further consider the cases
where N is an odd number, and when the optimal
solution is unique.

Corollary 2.2. If p(x) > 0,∀x, then the unique best
solution has each segment containing n elements.

Corollary 2.3. If the length of the histogram N = 2n+ 1,
then there exists a best solution such that one segment
contains n elements and the other contains n+1 elements.
Moreover, if p(x) > 0,∀x, then the unique best solution
satisfies that one segment has n elements and the other has
n+ 1 elements.
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