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Metric Driven RoSy Field Design and
Remeshing

Yu-Kun Laia, Miao Jinb, Xuexiang Xiec, Ying Hec,
Jonathan Palaciosd, Eugene Zhangd, Shi-Min Hua and Xianfeng Gue

Abstract—Designing rotational symmetry fields on surfaces is an important task for a wide range of graphics applications. This work
introduces a rigorous and practical approach for automatic N-RoSy field design on arbitrary surfaces with user defined field topologies.
The user has full control of the number, positions and indices of the singularities (as long as they are compatible with necessary global
constraints), the turning numbers of the loops, and is able to edit the field interactively. We formulate N-RoSy field construction as
designing a Riemannian metric, such that the holonomy along any loop is compatible with the local symmetry of N-RoSy fields. We
prove the compatibility condition using discrete parallel transport. The complexity of N-RoSy field design is caused by curvatures. In
our work, we propose to simplify the Riemannian metric to make it flat almost everywhere. This approach greatly simplifies the process
and improves the flexibility, such that, it can design N-RoSy fields with single singularity, and mixed-RoSy fields. This approach can
also be generalized to construct regular remeshing on surfaces. To demonstrate the effectiveness of our approach, we apply our design
system to pen-and-ink sketching and geometry remeshing. Furthermore, based on our remeshing results with high global symmetry,
we generate Celtic knots on surfaces directly.

Index Terms—metric, rotational symmetry, design, surface, parameterization, remeshing
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1 INTRODUCTION

M ANY objects in computer graphics and digital geometry
processing can be described by rotational-symmetry

fields, such as brush strokes and hatches in non-photorealistic
rendering, regular patterns in texture synthesis, and principal
curvature directions in surface parameterizations and remesh-
ing. N-way rotational symmetry (N-RoSy) fields have been
proposed to model these objects. Formally, an N-RoSy field
can be considered as a multi-valued vector field; at each
position, there exist N vectors in the tangent space, each
differed by a rotation of integer multiples of 2π

N .

The most fundamental requirement for an N-RoSy field design
system is to allow the user to fully control the topology of
the field, including the number, positions and indices of the
singularities, and the turning numbers of the loops [1], [2].
Automatic generation of N-RoSy fields with user prescribed
topologies remains a major challenge.

The method in [1] generates fields with user defined singular-
ities, but it also produces excess singularities, which requires
further singularity pair cancellation and singularity move-
ment operations. However, canceling singularities completely
without significantly affecting the field is challenging. In
general cases, cleaning up all the extra singularities is almost
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impractical. The method in [2] is the first one that guarantees
the correct topology of the field, but for the purpose of
generating smooth RoSy fields with specified singularities, it
requires the user to provide an initial field with all singularities
at the desired positions. In practice, finding such an initial
field is the most challenging step. For example, a common
user can hardly imagine a smooth vector field with only one
singularity as shown in Figure 2 and Figure 8. Although
such examples are extreme in some sense, fields with less
singularities are often preferred, because singularities cause
visual artifacts in real applications. Moreover, the power of our
approach is that users can specify any number of singularities,
with desired curvatures and positions, as long as the total
Gaussian curvature of the surface is 2πχ(S) (a topology-
related constant), where χ(S) is the Euler characteristic of the
surface. By using fewer singularities or placing singularities
at invisible vertices (hidden by occlusion or hardly seen from
practical viewpoints), artifacts can be significantly reduced.

In this work, we provide a rigorous and practical method which
allows the user to design N-RoSy fields with full control of
the topology (as long as they are compatible with global con-
straints such as the Gauss-Bonnet theorem and Poincaré-Hopf
theorem) and without inputting any initial field. Furthermore,
the algorithm can automatically generate a smooth field with
the desired topology and allow the user to further modify it
interactively.

1.1 Main Idea

Our method is based on the following intuition inspired by
the work in [2]. An N-RoSy field has local symmetry that is
invariant under rotations of an integer multiple of 2π

N . A sur-
face has global symmetry, which is intrinsically determined by



TO APPEAR IN IEEE TVCG 2

Fig. 1: Metric-driven N-RoSy field design. From top left to
bottom right, a 3-RoSy field, a 4-RoSy field, a flat cone metric
visualized as an obelisk, triangle-quad mixed remeshing based
on the metric, quad-remeshing, woven Celtic knot design over
the surface based on the quad-remeshing. Close-ups are given
for subfigures in the second row.

the Riemannian metric. If the global symmetry is compatible
with the symmetry of the N-RoSy fields, i.e. a metric is found
such that the holonomy along any loop is a multiple of 2π

N ,
then smooth N-RoSy fields can be constructed on the surface
directly.

Roughly speaking, if a surface admits an N-RoSy field, then
for any loop on the surface the total turning angle of the
tangent vectors along the loop cancels the total turning angle
of the N-RoSy field along the loop. Figure 7 provides such an
example where a genus one polycubic surface admits 4-RoSy
fields.

Most existing N-RoSy field design methods focus on adjusting
the rotation of the field and keep the underlying surface
untapped. While these approaches have been effective in some
cases, it is difficult to enforce topological guarantees such as
minimal number of singularities. Furthermore, these methods
all require a constant N in the N-RoSy fields. In this paper,
we describe a novel approach that modifies both the rotation
of the field and the rotations of the loops by deforming the
surface. Our work converts the problem of field design with
user defined singularities to that of metric construction. The
existence and uniqueness of the solution are guaranteed by
the Circle Pattern theory in [3] and discrete Ricci flow in [4].
Existing works are based on 1-forms, energy minimization,

and singularity movement/merging, and thus the theoretic
argument for the existence of fields with exact singularity
locations and indices is lack.

This approach greatly simplifies the process and produces
results that are quite challenging for the alternatives, such as
mixed-RoSy fields and remeshing in Figure 1, as well as fields
with only one singular point in Figures 2 and 8. We further
notice the distinction between N-RoSy fields and regular
remeshing (without T-vertices): field design sets constraints to
the rotational component of the holonomy, while remeshing
sets constraints not only in rotational component, but also in
translational component (i.e. generalized holonomy). Based on
this, we are able to produce compatible metric that admits
regular remeshing, as shown in Figure 1 and related Celtic
knots in Figures 13 and 16.

1.2 Algorithm Pipeline

Our algorithm pipeline can be summarized as follows. In the
first stage, an initial smooth vector field is constructed with the
following steps: 1. the user specifies the desired singularities
of the vector field; 2. we compute a flat cone metric, such that
all the cone singularities coincide with those of the field; 3. we
parallel transport a tangent vector at the base point to construct
a parallel vector field; 4. if the parallel field has jumps when
it goes around handles or circulates singularities, we apply
two methods to eliminate the jumps: rotation compensation
adjusts the rotation of the vector field; metric compensation
modifies the rotation of the loops by deforming the surface.
In the second stage, the vector field is further modified. we
interactively edit the rotation and the magnitude of the vector
field to incorporate user constraints.

Figure 2 illustrates the pipeline using rotation compensation
method. (a)-(e) correspond to the first stage, while (f) and
(g) correspond to the second stage. (a) User specifies the
desired singularities with both positions and indices (Step
1). Here only one singularity is specified at the blue point
with index −2. The curves are homotopy group basis. (b)
We compute a flat metric, the curvature at the singularity is
−4π, everywhere else 0 (Step 2). The surface is cut along
the base curves and flattened to the plane. Note that the
boundaries of the same color can match each other by a rigid
motion. Practical algorithm for the purpose of field design
does not need to explicitly flatten the whole surface onto a
parameter domain. (c) We pull back the parallel vector field
in the parameter domain onto the surface (Step 3). The field
has discontinuities along the red curve, which corresponds
to where “wave fronts” meet. It has no relation with the
initial cut, only the result of holonomy. (d) We compute a
harmonic 1-form to compensate the holonomy. (e) The smooth
vector field is obtained after rotation compensation (Step 4).
A smooth N-RoSy field has been constructed after the first
stage. (f)(g) User inputs geometric constraints (red arrows) to
guide the direction of the field, then the field is modified from
(f) to (g).
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Algorithm pipeline.

1.3 Contributions

In this work, holonomy plays the central role, which refers to
the total turning angle of the tangent vectors along a loop.
Holonomy represents the global symmetry of the surface.
This work introduces a metric-driven method for N-RoSy
field design (and remeshing). The major goal is to make the
global symmetry of the metric represented as holonomy to be
compatible with the local symmetry of N-RoSy field.

• We convert the N-RoSy field design problem (and
remeshing problem) to flat cone metric design with
constrained holonomy, and propose to use flat cone metric
to simplify holonomy and improve the efficiency and
efficacy of the algorithm. Furthermore, we give an explicit
compatibility condition for a parallel N-RoSy field with
the metric and generalize it for symmetric tessellations.

• We give rigorous and practical algorithms to construct
N-RoSy fields with user fully controlled singularities on
general surfaces. The method produces RoSy fields with
arbitrary homotopy types, without excess singularities,
and even with mixed-RoSy types. The algorithm is auto-
matic and allows interactive editing.

Furthermore, we apply our remeshing method for the geomet-
ric texture construction application to weave Celtic knotwork
on general surfaces, which requires highly global symmetry.

Note that this work focuses on the design and manipulation of
metrics, which is different from other published methods for
RoSy (or vector) field design. The reason to use new metric
is to simplify the computation of holonomy. If the original
metric is used, different loops have different holonomies.
The dimension of the loop space is infinite, therefore the
computation of all holonomy group is intractable. Using the
new metric, the homotopic loops share the same holonomy, so
the dimension of the homotopy group is finite. Metric design
is a powerful tool and has the potential of being utilized for
other graphics applications.

The organization of the paper is as follows. In Section 2, we
briefly review the most related works. In Section 3 we give a
brief introduction of the major concepts in Riemannian geom-
etry and generalize them to discrete surfaces, and describe the

theories for the compatibility between N-RoSy and metric. In
Section 4, we explain the algorithm in detail. Finally we report
our experimental results in Section 5 and conclude in Section
6 with insights and future directions of research. All the proofs
of our theoretic results can be found in the appendix.

2 PREVIOUS WORK

T HERE has been a significant amount of work in the
analysis and design of N-RoSy fields, especially when

N = 1(vector) and 2(tensor). For a survey, we refer the readers
to Palacios and Zhang [1] and references therein. Here, we will
only mention the most relevant work.

There have been a number of vector field design systems
for surfaces, most of which are generated for a particular
graphics application such as texture synthesis [5]–[7], fluid
simulation [8], and vector field visualization [9], [10]. Systems
providing topological control include [11], [12]. The system
of Zhang et al. has also been extended to create periodic
orbits [13] and to design tensor fields [14]. Fisher et al. intro-
duce a vector field design algorithm based on discrete exterior
calculus [15], which produces smooth fields incorporating user
constraints interactively through weighted least squares.

There has been some work on N-RoSy fields when N > 2.
Hertzmann and Zorin [16] and Ray et al. [17] demonstrate that
4-RoSy fields are of great importance in surface illustration
and remeshing, respectively. Both works also develop algo-
rithms that can smooth the 4-RoSy fields in order to reduce
the noise in the fields. Later, Ray et al. [2] provide the analysis
of singularities on N-RoSy’s by extending the Poincaré-Hopf
theorem as well as describe an algorithm in which a field with
a minimal number of singularities can be constructed based on
user-specified constraints and the Euler characteristic of the
underlying surface [2]. This is the first algorithm for direction
field design that guarantees the correctness of the topology of
the field. Palacios and Zhang provide comprehensive analysis
for rotational symmetry fields on surfaces and present efficient
algorithms for locating singularities, separatrices, and effective
design operations in [1].



TO APPEAR IN IEEE TVCG 4

For previous methods [1], [2], [15], [18], [19], designing an
N-RoSy field with a single singularity as shown in Figure 2
and Figure 8 will be very challenging. The method in [1]
involves complex singularity movement and merging, and can
not guarantee the topology of the field. The method in [18] is
based on harmonic forms, which is efficient, but can not fully
control the locations of singularities, and it is not clear how to
construct general N-RoSy fields, such as N = 3. Kälberer et
al. [19] require the construction of complex branched covering,
which converts N-RoSy field design to vector field design on
the covering space. Constructing a smooth vector field with
global continuity on the covering space is based on harmonic
forms, thus it also suffers from the lack of full control of the
singularities. The technique of [15] is based on holomorphic
1-forms. The zero points of the 1-forms are intrinsically
determined by the conformal structure and can not be fully
controlled by the users, either. Ray et al.’s method [2] is not
guaranteed to find the global minimum with respect to the
discrete variables. Our work is fundamentally different in that,
our method generates fields with exact locations and indices
of singularities as specified, no extra singularity will appear;
this can be rigorously proved. Compared with [2], by using
flat cone metric, holonomy is defined on the finite-dimensional
fundamental group, while in their work, holonomy is defined
on the infinite-dimensional loop space. Thus, the theoretic
argument and holonomy computation in our setting are greatly
simplified. We further consider a related, but much more
difficult problem of regular remeshing without T-vertices.

2.1 Pen-and-ink Sketching of Surfaces

Pen-and-ink sketching of surfaces is a non-photorealistic style
of shape visualization. The efficiency of the visualization and
the artistic appearance depend on a number of factors, one of
which is the direction of hatches. Girshick et al. [20] show
that 3D shapes are best illustrated if hatches follow principal
curvature directions. However, curvature estimation on discrete
surfaces is a challenging problem. While there have been
several algorithms that are theoretically sound and produce
high-quality results [16], [21]–[23], most of them still rely
on smoothing to reduce the noise in the curvature estimate.
Consequently, these methods do not provide control over the
singularities in the field. Hertzmann and Zorin [16] propose
the concept of cross fields, which are 4-RoSy fields obtained
from the curvature tensor (a 2-RoSy field) by removing the
distinction between the major and minor principal directions.
They demonstrate that smoothing on the cross field tends to
produce more natural hatch directions than smoothing directly
on the curvature tensor. Their original goal is to smooth the
field, and their method can not be directly used to control
the singularities, although they also point out the fundamental
need to control the number and location of the singularities
in the field. Zhang et al. [14] address this issue by providing
singularity pair cancelation and movement operations on the
curvature tensor field. However, their technique cannot handle
a 4-RoSy field.

2.2 Texture synthesis

In [7], 2 and 4-symmetry direction fields are used to steer
synthesizing using 2 and 4-symmetry texture samples. [24]
steer their texture generation method using a direction field
defined as the gradient of a fair Morse function (it has the
same singular points as the function). Based on the study of the
Morse complex of smooth harmonic functions [25], this allows
a user-controllable number and configuration of singularities.
The gradient of the harmonic function is a direction field. The
first work on computer generated Celtic knot was introduced
by Kaplan and Cohen in [26]. [27] introduces mesh quilting
method for geometric texture synthesis through local stitching
and deformation. Our method for constructing Celtic knots on
surfaces is a global method without partitioning the surface
and stitching the texture patches.

2.3 Quad-Dominant Remeshing

The problem of quad-dominant remeshing, i.e., constructing
a quad-dominant mesh from an input mesh, has been a well-
studied problem in computer graphics. The key observation
is that a nice quad-mesh can be generated if the orienta-
tions of the mesh elements follow the principal curvature
directions [28]. This observation has led to a number of
efficient remeshing algorithms that are based on streamline
tracing [28]–[30]. Ray et al. [17] note that better meshes can be
generated if the elements are guided by a 4-RoSy field. They
also develop an energy functional that can be used to generate
a periodic global parameterization and to perform quad-based
remeshing. The connection between quad-dominant remeshing
and 4-Rosy fields has also inspired Tong et al. [18] to generate
quad meshes by letting the user design a singularity graph
that resembles the behavior of the topological skeleton of a
4-RoSy field. On the other hand, Dong et al. [31] perform
quad-remeshing using spectral analysis, which produces quad
meshes that in general do not align with the curvature direc-
tions. A seminal method is introduced in [19], which converts
a 4-RoSy field on a surface to a vector field by using 4 layer
branched covering.

2.4 Metric Design

Kharevych et al. used circle patterns for discrete conformal
mappings in [3]. The Euclidean flat cone metric with user
prescribed singularities can be obtained by two stages: com-
putation of per-edge angle to incorporate the input geometry,
and solving circle radii with energy minimization. The edge
angles together with computed radii determine the metric,
using circle patterns. Jin et al. used circle packing to design
flat cone metrics in [4], which handles spherical, Euclidean
and hyperbolic discrete metrics. The algorithm is the discrete
analogy of Ricci flow [32]. A linear metric scaling method
for computing Euclidean flat cone metric with prescribed
curvatures is introduced in [33], where the cone singularities
can be automatically selected to minimize the distortion. Based
on the work by Luo [34], Springborn et al. [35] improved the
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accuracy of [33] and produced precise results by minimizing a
convex energy function, which is a non-linear method. Circle
pattern and discrete Ricci flow are also non-linear methods,
require a preprocessing stage, and get an accurate metric; the
metric scaling method is linear and flexible for general meshes
but with less accuracy.

3 THEORETIC FOUNDATIONS

I N this section, we first briefly introduce Riemannian geom-
etry theories, and then generalize them to discrete settings.

Next we present our major theoretical results. The detailed
proofs can be found in the Appendix.
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Fig. 3: Parallel transport and holonomy. θ is the holonomy
along γ.

3.1 Basic Concepts in Riemannian Geometry

In order to quantitatively measure the rotation of a vector field
along a curve and the rotation of curve itself on a surface, we
need to introduce some tools from Riemannian geometry.

Parallel transport on a curved surface plays the central role.
Suppose γ is a curve on the surface S. The envelope of all the
tangent planes along γ is a developable surface S̃. We develop
the envelope to the plane, so that γ becomes a planar curve.
Suppose v is a tangent vector at a point p, we translate it to
ṽ on the plane along the development of γ. This corresponds
to the parallel transport on the surface. The angle between
the resulting transported vector and the initial vector is called
the rotational component of the holonomy along γ, or simply
the holonomy of γ. Holonomy describes the global symmetry
of the surface. Figure 3 illustrates a parallel transport on a
sphere S, where γ is a circle, S̃ is a conic surface, angle θ is
the holonomy along γ.

Suppose a vector field v (in red) is along a path γ, connecting
p and q. We parallel transport the tangent
vector at the starting point p to the ending
vertex q, this parallel vector field is w in
blue. The rotation θ from w(q) to v(q) is
called the absolute rotation of the vector
field v along the path γ. The absolute
rotation of the tangent direction of γ is
equal to its holonomy. The relative rota-
tion of the vector field v along the path
γ is the difference between the absolute

N

S

γ

w
v

p

q
θ

Fig. 4: Absolute rota-
tion.

rotation of v and the holonomy of γ, which indicates the
change of the angle between v and the tangent vector of γ
along γ. The compatibility condition for a smooth N-RoSy
field on a surface is that for any loop γ, the relative rotation
of v along γ is an integer times of 2π

N . Our central task is to
make the absolute rotation of a vector field and the holonomy
to cancel out each other.

Parallel transport and holonomy along loops on curved sur-
faces are very complicated, which con-
tributes to the difficulty of N-RoSy de-
sign. For example, if γ is the boundary
of a surface patch Ω, then the holonomy
of γ equals to the total curvature on Ω,∫
Ω
K, where K is the Gaussian curva-

ture. Therefore, the parallel transport is
path dependent. If K is zero everywhere,
namely, the surface is flat, then parallel
transport is path independent. The surface

θ

N

S

Ω

Fig. 5: Holonomy vs.
curvature.

global symmetry is extremely easy to analyze. Unfortunately,
according to the Gauss-Bonnet theorem, the total Gaussian
curvature of the surface is a constant 2πχ(S), where χ(S)
is the Euler characteristic of the surface. If the surface is
not of genus one, then its Riemannian metric cannot be flat
everywhere.

Fig. 6: Flat cone metrics on a genus one kitten mesh. The
first metric has no cone singularities, the second metric has
16 cone singularities, i.e.corners of polycube.

Fortunately, we can design a flat cone metric of an arbitrary
surface, such that the curvature is zero almost everywhere
except at finite number of cone singularities. Let g be the
induced Euclidean metric tensor on S. Suppose a user has
selected the position and curvatures of the singularities on
a surface, the target curvature is K̄, then the target metric
can be deformed by the Hamilton’s surface Ricci flow [32],
dg(t)

dt = (K̄−Kg(t))g(t). Figure 6 demonstrates two different
flat cone metrics of a genus one surface obtained by using
Ricci flow.

3.2 Discrete Theories

All the aforementioned Riemannian geometric concepts are
defined on smooth surfaces. In the following, we generalize
the major concepts to the discrete settings.

Let M be a triangular mesh in R3. A metric of M is a
configuration of edge lengths, such that the triangle inequality
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holds on all faces. The vertex curvature is the angle deficit,
i.e., 2π-the total angle around the vertex. A flat cone metric
is a metric such that the curvatures are zero for almost all
the vertices, except at a few ones. The vertices with non-
zero curvatures are called the cone singularities. Note that
metric determines curvatures. Reversely, in the discrete case,
given the curvatures on vertices, we can uniquely determine a
conformal metric (up to a scaling factor) using the methods in
[3], [4], [33], [35]. The main concern to use such methods is
because they can design metrics from prescribed curvatures,
and thus we can accurately control the positions and indices of
singularities of the field. Figure 6 shows two flat cone metrics
for a genus one kitten model. The mesh is developed onto the
plane by a flat metric without singularities. While the curvature
is determined by the metric, the total curvature of the surface
is determined by the topology of the mesh, which is equal to
2πχ(M), where χ(M) is the Euler characteristic.

Let M be a mesh with a flat cone metric, and S =
{s1, s2, · · · , sn} be the cone singularity set. Let M̄ denote
the mesh obtained by removing all the cone singularities from
M , M̄ = M\S.

v0

v1 v0

v1

Fig. 7: Discrete parallel transport and holonomy. Homotopic
loops sharing the base vertex have the same holonomy.

3.2.0.1 Parallel Transport: Parallel transport is the direct
generalization of planar translation. Discrete parallel transport
was introduced in [36] in the setting of geodesics on discrete
surfaces. Let γ be a path consisting of a sequence of consecu-
tive edges on M̄ , the sorted vertices of γ are {v0, v1, · · · , vn}.
Let Ni denote the one-ring neighborhood of vi (the union of
all the faces adjacent to vi), then the one-ring neighborhood
of γ is defined as the union of all Ni’s: N(γ) =

⋃n
i=0Ni.

The development of N(γ) refers to the following process: first
we flatten N0 on the plane, and then we extend the flattening
to N1, such that the common faces in both N0 and N1 coincide
on the plane. This process is repeated until Nn is flattened.
In this way, we develop N(γ) to the plane. We denote the
development map as φ : N(γ) → R2. Note that the restriction
of the development map on each triangle is a planar rigid
motion. Parallel transport on the mesh along γ is defined as
the translation on the development of N(γ). See Figure 7 for
the illustration of parallel transport.

3.2.0.2 Holonomy: In practice, we are more interested in the
loop case, i.e. v0 = vn. When parallel transporting a tangent
vector at v0 along γ to vn, the resulting vector differs from

the original vector by a rotation, which is the holonomy of
the loop, denoted as h(γ). Given a vector field v along γ, we
parallel transport the vector at the starting point. The vector at
the ending point differs from the transported vector, which is
the absolute rotation of the field along γ, denoted as Rv(γ).

Two loops γ1, γ2 sharing a base point p are homotopic, if one
can deform to the other. The concatenation of γ1, γ2 through
p is still a loop, which is the product of them. All homotopy
classes of loops form a group, the so-called homotopy group
π(M̄). Suppose M has g handles, and n cone singularities.
Then the basis of π(M̄) is depicted in Figure 9, where each
handle has two loops ak, bk, and each singularity si normally
has one loop ci. Note that in Figure 9, the loop around the
center singularity is not included as a basis in the homotopy
group, as this loop can be easily generated by the combination
of all other marked loops. Details are explained in [2].

Homotopic loops have the same holonomy if the underlying
surface has a flat cone metric. In this case, we can define
the holonomy map, h : π(M̄) → SO(2), where SO(2) is
the rotation group in the plane. Its image h(π(M̄)) is the
holonomy group of M , denoted as holo(M̄).

3.2.0.3 Compatibility: N-RoSy The relative rotation of a
vector v along γ is defined as the difference of the absolute
rotation of v and the holonomy of γ, Tv(γ) = Rv(γ)−h(γ).
The relative rotation is equivalent to the turning number
defined by [2]. Ray et al. proved that for a smooth N-RoSy
field, the turning number along any loop must be integer times
of 2π

N .

Tv(γ) = Rv(γ)− h(γ) ≡ 0,mod
2π
N
. (1)

Furthermore, the turning numbers on a basis of the homotopy
group π(M̄)

{Tv(a1), Tv(b1), · · · , Tv(ag), Tv(bg), Tv(c1), · · · , Tv(cn)}
(2)

determine the homotopy class of the N-RoSy field. We develop
our theoretical results based on these fundamental facts. All
the proofs are given in the appendix.

The following theorems lay down the theoretical foundation
of our metric-driven method, which claims that the topological
properties of a vector field are preserved by metric deforma-
tion.

Theorem 3.1: Suppose v is a smooth N-RoSy field on a
surface M . g(t) is a one parameter family of Riemannian
metric tensors. Then for any closed loop γ on M , the relative
rotation Tv(γ) on (M,g(t)), i.e. M with the metric g(t), is
constant for any t.

Thus, smooth metric deformation doesn’t change the topology
of the field. We can therefore choose a special metric to
simplify the computation as much as possible, i.e. a flat cone
metric.

The simplest N-RoSy field is the parallel field, the following
theory leads us to design our algorithm.
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Theorem 3.2: Suppose M is a surface with a flat cone metric.
A parallel N-RoSy field exists on the surface, if and only if all
the holonomic rotation angles of the metric are integer times
of 2π

N .

For genus zero closed surfaces, the curvature of cone singu-
larities determine the holonomy.

Corollary 3.3: Suppose M is a genus zero closed surface with
finite cone singularities. M has a parallel N-RoSy field, if and
only if the curvature for each cone singularity is 2kπ

N .

According to this corollary, it is easy to verify the symmetry
of platonic solids. If a platonic solid has N vertices, then
the vertex curvature is 4π

N , therefore the rotational homology
group is generated by the rotation of angle 4π

N , a N
2 -RoSy field

exists on it. For example, an octahedron is with 6 vertices and
3-RoSy; a dodecahedron is with 20 vertices and 10-RoSy.

The following existence theorem gurantees the existence of
N-RoSy fields on surfaces with arbitrary flat cone metrics.

Theorem 3.4: Suppose M is a surface with flat cone metric,
then there exists a smooth N-RoSy field.

Suppose M̃ is a branched covering of M (defined in [19]), then
the holonomy group of M̃ is a subgroup of that of M , M̃ may
have more N-RoSy fields with lower N . For example, in [19],
M has a parallel 4-RoSy field, its 4-layer branch covering M̃
allows a parallel 1-RoSy field, namely, a vector field.

Tessellation We wish to generalize planar tessellation to
general surfaces. If the symmetry of the metric on the surface
is compatible with the symmetry of the planar tessellation,
then the surface can be re-meshed according to the planar
tessellation.

We generalize holonomy to include both translation and rota-
tion. Figure 7 shows the concept. Given a loop γ, the starting
vertex v1 coincides with the ending vertex vn, we develop its
neighborhood N(r) onto the plane, then the development of
N1 and that of Nn differs by a planar rigid motion, which is
defined as the general holonomy along γ. Two loops sharing
the common base vertex share the same general holonomy.
Therefore, general holonomy maps the homotopy group to a
subgroup of planar rigid motion E(2). We denote the image
as Holo(M̄), and call it the general holonomy group of M̄ .

Suppose T is a tessellation of the plane R2, τ is a rigid motion
preserving T , τ(T ) = T . The symmetry group of T is defined
as

GT = {τ ∈ E(2)|τ(T ) = T}.

Theorem 3.5: Suppose M is with a flat cone metric, the
holonomy group of M̄ is Holo(M̄), if Holo(M̄) is a subgroup
of GT , then T can be defined on M .

4 ALGORITHM

S UPPOSE the user specifies topological and geometric con-
straints for the N-RoSy field: topological constraint means

the singularities, including the number, positions and indices;

geometric constraint means the directions and lengths of the
fields at some regions on the surface.

For discrete computation on meshes, we assume that the
N-RoSy field is piecewise linear; each vertex is assigned
a representative vector from N possible directions. This is
consistent with singularities, since they are naturally specified
at certain vertices. As detailed later in the section, we construct
vector fields on flat metric, where the tangent vectors are
defined intrinsically, and there is no difference to define the
tangent on vertices or on faces. When we pull back the planar
field to the original mesh, we define the tangent plane at each
vertex as the average of the surrounding face planes, as done
before in [28] for smoothing tensor fields.

Fig. 8: A vector field on a genus zero closed surface with a
single singularity with index +2.

Our algorithm has two major stages: stage one is to compute an
initial N-RoSy field, which satisfies the topological constraints;
stage two is to edit the N-RoSy field, locally rotate and scale
the initial field to satisfy the geometric constraints.

4.1 Initializing N-RoSy Field

This stage has 3 steps: computing the metric, computing
the holonomy, and holonomy compensation. For genus zero
meshes, we only need the first step, because the metric will
be compatible with N-RoSy fields automatically according to
corollary 3.3.

4.1.1 Computing the Flat Cone Metric

The cone singularities are fully determined by the singularities
on the desired N-RoSy field. Let v be a cone singularity, then
its curvature and its index are closely related by the formula
Ind(v) = k(v)

2π , where Ind(v) is the index of v. Note that
the Gaussian curvature at vertex v satisfies Kv = 2π −

∑
τi,

where τi are top angles of 1-ring neighbors of v. Thus, if
the index is less than 1 (i.e. the curvature is less than 2π),
then it is easy to define the curvature of v. For vertex with
an index greater than or equal to 1, it is more complicated to
find the curvature, since the summation of the corner angles
surrounding the vertex should be less than or equal to zero. We
handle this situation in the following way. We punch a small
hole at the cone singularity. Suppose the boundary vertices of
the small hole are {v1, v2, · · · , vm}. Then the index of the
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singularity and the total curvature of the boundary are related
by Ind(v) =

∑m
i=1 ki

2π + 1. Note that this is a problem all the
algorithms will face; here we give a simple solution to the
problem. Given the desired curvature, we can compute a flat
metric using one of the conventional methods (e.g. the discrete
Ricci flow method in [4]). Figure 8 illustrates a vector field
constructed using this method on the Michelangelo’s David
head surface,which is a genus zero closed surface, with one
singularity of index +2.

According to corollary 3.3, the flat cone metrics on a genus
zero closed mesh satisfy the compatible condition automat-
ically. Figure 10 shows one example, both 3-RoSy and 4-
RoSy fields on a genus zero surface are constructed by parallel
transport on the flat cone metric directly.

4.1.2 Computing the holonomy

For genus zero closed meshes, if the cone singularity cur-
vatures satisfy the compatibility condition 1, then the flat
cone metric of the surface satisfies the same condition. For
high genus meshes, the cone singularity curvatures cannot
guarantee the holonomy compatibility. This can be found by
the example shown in Figure 2(c), where the metric on a
genus two surface has a single cone singularity with curvature
−4π, but the vector field constructed by parallel transport is
not smooth. Thus, explicit computation (and compensation) of
holonomy is required, as shown by the following example on
a genus three surface.

We compute a basis of the homotopy group π(M̄) using
the method in [19]. The base loops
are shown in Figure 9. Then we
compute the development of each
base loop γ to obtain the holon-
omy h(γ). Please refer to Fig. 7
for an example of the development
process. The holonomies of all the
base loops form the generators of
the holonomy group. For example,
Figure 9 shows a genus three mesh

a1

a2

a3

b1

b2

b3

c1

c2

c3

Fig. 9: Homotopy basis for a 3-
hole torus with 4 singularities.

with four cone singularities, which are labeled with different
colors. The curvatures of the red, orange and blue singularities
are −π,−3π,−2π, respectively. The holonomic rotation angles
for c1,c2,c3 are 0,π and 0 (modulo 2π).

The holonomic rotation angles (with respect to a modulus of
2π) are as follows:

a1 b1 a2 b2 a3 b3
1.5551π 0.9683π 1.3704π 1.5175π 1.5975π 1.0574π

4.1.3 Holonomy Compensation

There are two methods for holonomy compensation, rotation
compensation and metric compensation. The first one is to
adjust the absolute rotation of the direction field Rv(γ); the
second one modifies the metric to change the holonomy h(γ),

Fig. 10: The Pensatore surface is a genus zero closed mesh.
A 3-RoSy field is shown in the first row, where there are 6
cone singularities with the curvatures of 2π

3 . A 4-RoSy field is
shown in the second row, there are 8 cone singularities with
the curvatures of π

2 .

such that the relative rotation is equal to 2kπ
N along arbitrary

loops.

4.1.3.1 Rotation Compensation: This method is similar to
the method in Ray et al. [2]. The rotation angle of the field is
represented as a closed 1-form. The key difference is that, their
method further rotates an existing smooth field and change
the topology of the field; our method rotates a non-smooth
field and make it smooth, it can also be applied to change the
topology of a non-smooth field.

The homotopy class of the N-RoSy field is determined by the
relative rotations on the basis of homotopy group in equation
2. We first use a conventional method [18] to compute a set
of harmonic 1-form bases ωk corresponding to the homotopy
group generator γk. The mesh M is cut open along γk to
obtain a new mesh Mk with two sides of γk denoted as γ+

k

and γ−k , respectively. The harmonic function gk : Mk → R
can be computed using

∆gk = 0,

with the boundary conditions gk|γ+
k

= 1 and gk|γ−k = 0. We
transfer the 1-form dgk to M based on the edge correspon-
dence, and find a function hk : M → R, such that

∆(dgk + dhk) = 0.

Then, ωk = dgk + dhk is one of the basis. Please refer
to [18] for the detailed discussions. ω =

∑
wkωk is a linear

combination of all the bases, where wk’s are the weights to
determine. To compute a harmonic 1-form ω on M̄ , such that
for any homotopy group generator γk, the following condition
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holds: for N-RoSy field design,

Tv([γk])− h([γk]) =
∫

γk

ω =
∫

γk

∑
k

wkωk.

Solving a small linear system with wk’s as unknowns obtains
the desired 1-form. Such a harmonic 1-form exists and is
unique. Conceptually, the tangent field corresponding to the
1-form ω is constructed in the following way. We select a
tangent vector w0 at the base vertex. Suppose v is another
vertex, the shortest path on M̄ from v0 to v is γ, then we
parallel transport w0 to v along γ to obtain w, then we rotate
w clock-wisely about the normal by an angle θ =

∫
γ
ω. By this

way, we propagate the tangent vector w0 to cover the whole
mesh.

In practice, we use an equivalent fast marching method to
propagate the vector field.

1) Select a tangent vector w0 at v0, put v0 in a queue.
2) If the queue is empty, stop. Otherwise, pop the head

vertex vi of the queue. Go through all the neighbors of
vi. For each neighboring vertex vj , which hasn’t been
accessed, parallel transport wi from vi to vj , rotate it
counter-clock-wisely by angle ω(vi, vj). Enqueue vj .

3) Repeat step 2, until all the vertices have been processed.

Figure 2 illustrates a vector field on a genus two amphora
model with one singularity, computed using rotation compen-
sation.

4.1.3.2 Metric Compensation: For designing smooth N-
RoSy fields, automatic rotation compensation is already
enough. For the purpose of remeshing, metric compensation
method will be required. In contrast to rotation compensation,
this approach modifies the flat cone metric to achieve the
desired general holonomy which satisfies the compatibility
condition in Theorem 3.5.

Conventional algorithms [3], [4], [33], [35] for flat cone met-
rics cannot produce metrics satisfying the holonomy constraint
in Eqn.1. We observe that the flat cone metric on a polycube
[37] satisfies the compatibility condition in Eqn.1 for 4-RoSy
fields. The flat metric on a mesh with all faces being equilateral
triangles is compatible with 6-RoSy fields.

The following algorithm computes the desired flat cone metric
for genus zero surfaces based on the polycube map method
introduced in [38].

1) First, the user specifies the singularities of the N-
RoSy field for both positions and indices, such that
the curvatures satisfy the holonomy condition in Eqn.1
and are positive. Furthermore, the user specifies the
connectivity of a polyhedron P , whose vertices are the
cone singularities, and faces are either quadrilaterals or
triangles.

2) We use the discrete Ricci flow method [4] to compute a
flat cone metric. If {si, sj} is an edge in P , we compute
the shortest path connecting si, sj under the flat metric.
P is decomposed to segments by the line segments.

3) Each segment is deformed to a rectangle or a equilateral
triangle by discrete Ricci flow. For example, if we set
the boundary curvature at the corners to be π

2 and zero
everywhere else for a segment, then the metric obtained
from the Ricci flow makes the segment a rectangle.

4) We assembly the rectangles (equilateral triangles) to
the polycube. By scaling the polycube along x-axis,y-
axis and z-axis respectively, we make its holonomy
compatible to the conditions in Theorem 3.5.

For more details for constructing polycubes (especially for
high-genus models), we refer readers to [38].

Figure 1 illustrates several remeshing results based on the
metric compensation. Frame (a) and (b) show a 3-RoSy field
and a 4-RoSy field on the buddha model respectively. In frame
(c), a flat cone metric deforms the mesh in the shape of an
obelisk, which induces a mixed 4-RoSy and 3-RoSy field on
the mesh. Frame (d) shows a mixed quadrilateral and triangle
tessellation based on the flat cone metric illustrated in Frame
(c). As illustrated, we construct a 12-Rosy field on the Buddha
model with 9 singularities. The curvatures are 90 degrees for
the bottom 4 singularities, 60 degrees for the middle 4 cones
and 120 degrees for the apex. On the pyramid of the obelisk,
we show the 3-RoSy field; on the rest part of the obelisk, we
show the 4-RoSy field. Frame (e) shows a quad-remeshing
result corresponding to the field in Frame (b). Note that some
cone singularities around the shoulder are negative, which can
be handled by our method consistently. The Celtic knot in
Frame (f) is constructed based on the quad-remeshing in frame
(e).

4.2 N-RoSy Field Editing

Suppose users add some geometric constraints to the N-Rosy
field, our method can incorporate them easily. We decompose
the constraints as orientation constraints and length constraints.
Suppose the user specifies the directions of the vectors at
special point set ω ⊂ M . For each vertex q on M , assume
that the angle between the current angle w(q) and the edited
direction given the constraints is ψ(q). Let p ∈ ω with user
specified guiding vector, the angle between w(p) and the
desired direction is ψ̄(p). For the N-RoSy field with N > 1,
any direction from the multi-valued directions is valid. We
normally choose the one closest to w(p) to reduce introduced
rotations. Then we compute a harmonic function using the
method described in [25] ψ : M → R with the boundary
condition on Ω. This leads to the well-known Laplacian
equation with the Dirichlet boundary conditions. For each
point q ∈M , the following holds

∆ψ(q) =
∑

<q,r>∈M

wqr (ψ(r)− ψ(q)) = 0,

where ∆ is the discrete Laplacian-Beltrami operator, and wqr

is the cotangent weights [39]. For each hard constraint at
vertex p, we simply replace ∆ψ(p) = 0 with the constraint
ψ(p) = ¯ψ(p). For a soft constraint at p that only need to
satisfy in the least-squares sense, we add λψp = λψ̄(p) to the
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Fig. 11: Vector field editing.

linear system to form an over-determined system, where λ is
the relative importance of given constraint. We may compute
the least-squares solution to this linear system, which amounts
to minimizing a combination functional of the Dirichlet energy
and given constraints.

After solving the linear system, at each point q ∈ M , we
rotate w(q) by an angle ψ(q). The length constraint can be
satisfied using the similar harmonic function method. It is clear
that harmonic interpolation of directions won’t generate any
new singularities. Given the user-defined length constraints (by
default, lengths are positive), the harmonic length interpolation
will generate a field without any additional singularities, due to
the maximum principle of harmonic function. Compared with
the method in [15], we both lead to a least-squares problem
which can be efficiently solved. While the fundamental dif-
ference is that our method smoothly alters an initially smooth
N-RoSy field, thus it is guaranteed that no extra singularities
will be introduced; on the contrary, extra singularities may
emerge in their method.

Figure 11 demonstrates a vector field editing process on the
kitten surface. The red arrows are specified directions, and
the vector field is modified to follow these directions. The
computation of N-RoSy field editing just takes a fraction of
second on commodity PCs (cf. Table 1) and thus can be
performed interactively.

4.3 Handling Open Meshes

Our method can easily handle meshes with open boundaries.
If the N-RoSy field can be arbitrary at the boundary, we
simply need to compute a flat cone metric of the mesh and the
further processing is the same. To compute the flat cone metric
with Ricci flow, the Gaussian curvature for each boundary
vertex should be prescribed, just as the cone singularities. The
Gaussian curvature at a boundary vertex v is determined by
Kv = π −

∑
τi, where τi are top angles of 1-ring neighbors

of v. For our purpose, the curvatures at boundaries and cone
singularities may be chosen rather arbitrarily, as long as the
total Gaussian curvature satisfies Gauss-Bonnet theorem. If the
N-RoSy field is desired to be along the boundaries, we may

use the concept of double covering to easily solve this [40].
We first make a duplication of the input mesh but with
the orientation of all the faces inverted, and then glue the
duplicated version together with the input open mesh to form
a symmetric closed mesh. For the newly created mesh, it can
be processed in the usual way, but keep in mind that each
singularity appears twice on both submeshes simultaneously.
We use the derived N-RoSy field on the original half of the
mesh as the output. Due to the symmetry, we may verify that
the N-RoSy field should be parallel to the boundaries. If, on
the other hand, the N-RoSy field is desired to be orthogonal
to the boundaries, we may rotate the field by 90 degrees using
hodge star operator.

In this section, practical algorithms for N-RoSy field design
and remeshing are discussed. To eliminate jumps around
handles or singularities, either rotation compensation or metric
compensation can be used. Neither of these methods will
generate any additional singularities. Rotation compensation
locally rotates the vector field according to a smooth harmonic
function. It’s clear that this process will not generate excessive
singularities (vectors with vanishing length). For metric com-
pensation, the constructed polycubes just contain the specified
singularities. Therefore, our method is completely free of
unwanted additional singularities. For constructing smooth N-
RoSy fields, rotation compensation is generally enough. In
this case, the only user inputs are the positions and indices of
the singularities, all the other steps are completely automatic.
Furthermore, the inputs of singularities can be obtained from
other fields directly, such as the principal direction fields
etc. Therefore, the system can be fully automatic. If user
interaction is desired, the system allows users to give more
inputs to edit the field. Metric compensation approach requires
slightly more information, but it not only compensates for the
rotational component of holonomy, but also the generalized
holonomy that satisfies the compatibility condition in Theo-
rem 3.5 and admits regular remeshing.

5 EXPERIMENTAL RESULTS

W E implemented our algorithm in C++ on an Intel
Core2Duo 2GHz Laptop with 2GB memory. We report

the timings for the major steps in Table 1, which include the
computations for the flat metric, rotational compensation, and
user editing. The flat metric computation accounts for most of
the time. Although the Ricci flow method is non-linear, using
the Newton solver described in [4], the performance can be
greatly improved. For moderately sized models, sufficiently
fast feedback can be given, allowing interactive changing
of singularities. The rotation compensation and feedback to
editing are linear and can be performed at an interactive rate.
Also, if no user editing is involved, the whole pipeline is fully
automatic, after singularities are specified, or derived from
some field (e.g. principal tensor fields).

Remeshing In the holonomy compensation step of stage one
(section 4.1.3), we use the metric compensation method to
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adjust the metric to satisfy the tessellation compatibility con-
dition in Theorem 3.5. Then we develop the mesh to the
plane, and tessellate the development. This induces a desired
tessellation.

Figure 1 demonstrates the results of N-RoSy field on the
buddha model. Frame (a) and (b) show a 3-RoSy field and a
4-RoSy field on the buddha model respectively. In frame (c), a
flat cone metric deforms the mesh in the shape of an obelisk,
which induces a mixed 4-RoSy and 3-RoSy field on the mesh.
(d) shows a mixed quadrilateral and triangle tessellation based
on the flat cone metric. The Celtic knot in the last frame is
constructed based on the quad-remeshing in frame (e).

Celtic Knot on Surface Celtic knot refers to a variety of
endless knots, which in most
cases contain delicate symmetries
and entangled structures. Figure
12 shows a simple Celtic knot.
To the best of our knowledge,
Kaplan and Cohen [26] were
the first to present a technique
for computer generated Celtic
design. Most of their results Fig. 12: A planar Celtic knot.

focused on planar Celtic knot design, whereas our work
emphasizes Celtic knots woven over surfaces with highly
global symmetry. Celtic knot produced by our method is
based on regular remeshing. They are geometric textures
represented as surfaces with tens of thousands of face.

The local symmetry and the quality of remeshing of the
surfaces play crucial roles for the knotwork on surfaces.
Based on our remeshed results, those uniform quads and
triangles provide a perfect canvas for Celtic knot design.
Similar to the method in [26], we set control points directly on
surfaces, connecting them using polynomials based on the knot
designing rules. Compared with traditional geometric texture
synthesis approaches, we do not need shell mapping from
planar domains to surfaces. Figures 1,13,16 show our Celtic
knots synthesis results on several surfaces. The knotwork
has complicated structures and rich symmetries. In the last
example, celtic knots are woven with colored threads only
over Bimba’s body due to the aesthetic concern, mimicking
the dressed sweater.

Pen-and-ink Sketching of Surfaces Pen-and-ink sketching of
surfaces is a non-photorealistic style of shape visualization. In
this work, we follow Hertzmann and Zorin [16] by treating

TABLE 1: Running times for different steps of our algorithm.
(F -No. of faces, g-genus, s- No. of singularities)

Model F g s Metric(s) Comp.(s) Edit(s)
kitten 19350 1 0 1.198 0.078 0.410
amphora 20078 2 1 2.164 0.266 0.452
venus 20308 0 5 1.843 0.087 0.453
bimba 22412 0 6 1.426 0.098 0.522
3holes 3514 3 4 0.320 0.157 —
Pensatore(3-RS) 21304 0 6 1.436 0.079 —
Pensatore(4-RS) 21304 0 8 1.431 0.083 —
Buddha(3-RS) 20828 0 6 1.480 0.078 —

Fig. 13: Two woven Celtic knot designs on the Moai surface,
which have different global symmetries.

Fig. 14: Pen-and-ink sketching of venus model.

hatch directions as a 4-RoSy field.

Our method neither requires the user to input an initial field,
nor generates excess singularities except those specified by
the user. It enables the user to fully control the number,
positions and the indices of singularities, and edit the field
interactively. These merits make our system rather desirable
for NPR applications.

For example, we perform the pen-and-ink sketching on the
Venus model in Figure 14 and Bimba model in Figure 15.
The left columns show the 4-RoSy fields with user specified
singularities, 6 for Bimba, 5 for Venus. Comparing with the
algorithm in [1], our method reduces the number of singu-
larities by one order of magnitude, and locates them at the
natural positions. This greatly reduces the visual artifacts and
simplifies the designing process. The editing process improves
the hatching quality on the Bimba model shown in 15.

More experimental results are reported in our supplementary
video.

6 CONCLUSIONS

T His work introduces rigorous and practical algorithms for
automatic N-RoSy field design on arbitrary surfaces with

prescribed topologies. The user has full control of the number,
positions and indices of the singularities (as long as necessary
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Fig. 15: Pen-and-ink sketching of bimba before (top row) and
after editing (bottom row). The hatch directions follow the
natural directions better (e.g. neck,arm).

global constraints are satisfied), as well as the turning numbers
of the loops.

We have also proved the compatibility condition between the
metric and N-RoSy fields (and regular tessellation). Based on
the theoretical findings, we turn the problem of N-RoSy field
design to a metric design problem with constrained holonomy.
By changing the metric of the surface, we enforce the global
symmetry of the surface to be compatible with the local
symmetry of the N-RoSy field. By using the flat cone metric,
we greatly reduce the complexity of the design process. We
also generalize the method for tessellation and mixed N-RoSy
field design.

We applied our algorithm for NPR rendering, remeshing, and
geometric texture synthesis. We develop a global approach to
design Celtic knot on surfaces.

Some limitations still exist in our approach. The major limita-
tion is our method is based on Ricci flow to compute flat cone
metrics with specified singularities. This method is non-linear,
and compared with linear methods (e.g. based on 1-forms), this
method is relatively slower. Using Newton solver speeds up
the computation, but is still slower than linear methods. For
applications that requires larger model or faster feedback, we
may explore parallel multigrid solvers to further improve the
performance.

Metric design is a very general approach, and we believe
that it has potential of being applied for many other graphics
tasks, such as parameterizations, mesh editing, and efficient
rendering, etc. Our work demonstrates the effectiveness of
using flat cone metrics to produce high quality N-RoSy fields.
We also conjecture N-RoSy fields can be utilized to produce a
special flat cone metric. In the future, we will explore further

in these directions.
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APPENDIX

Theorem 3.1 Suppose v is a smooth N-RoSy field on a surface
M with an initial metric g(0). g(t) is a one parameter family of
Riemannian metric tensors. Then for any closed loop γ on M , the
relative rotation Tv(γ) on (M,g(t)) is a constant for any t.

Proof The Levi-Civita connections are continuously determined by
g(t), therefore the parallel transport is continuously determined by
g(t). The absolute rotation of v along γ, Rv(γ) is a continuous
function of t, and so is the holonomic rotation of γ, h(γ). We have
that the relative rotation Tv(γ) is a continuous function. Because v is
smooth on (M,g(0)), therefore N

2π
Tv(γ)|t=0 is an integer. Because

it is also continuous, therefore, it must be a constant for all t. Since
γ is chosen arbitrarily, the homotopy type of v, the indexes of the
singularities are preserved during the continuous metric deformation
g(t). Q.E.D.

Theorem 3.2 Suppose M is a surface with a flat cone metric. A
parallel N-RoSy field exists on the surface, if and only if all the
holonomic rotation angles of the metric are integer times of 2π

N
.

Proof If the holonomic rotations of the flat cone metric are 2kπ
N

, then
parallel transporting an N-RoSy at the base point results in a field v,
Rv(γ) = 0 for any loop γ. Consequently the compatibility is satisfied
and the field is smooth. Reversely, if there exists a smooth parallel
N-RoSy field v, then Rv(γ) is zero for any loop γ. Therefore, h(γ)
must be integer times of 2π

N
. Q.E.D.

Corollary 3.3 Suppose M is a genus zero closed surface with a finite
number of cone singularities. M has a parallel N-RoSy field, if and
only if the curvature for each cone singularity is 2kπ

N
.

Proof Let γ be a loop, which is the boundary of a region Ω on the
surface. Suppose there are m cone singularities {s1, s2, · · · , sm} in-
side Ω. According to Gauss-Bonnet theorem, the holonomic rotation
angle of γ equals to the total curvature of Ω, h(γ) =

∑m
i=1 ki, where

ki is the curvature of si. Let γi be a loop surrounding si without
enclosing any other singularities, then {γi, i = 1, 2, · · · , m−1} is a
set of generators of π(M̄). M has a smooth parallel N-RoSy field,
if and only if all h(γi)

′s are 2kπ
N

. Q.E.D.
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Theorem 3.4 Suppose M is a surface with flat cone metric, then
there exists a smooth N-RoSy field.

Proof There exists a unique harmonic 1-form ω, such that
∫

γ
ω =

h(γ), for any loop γ on M̄ . We parallel transport an N-RoSy from
the base point, and rotate it during the transportation by an angle∫

γ
ω, where γ is any path from the base to the current point. The

resulting field is smooth. Q.E.D.

Theorem 3.5 Suppose M is with a flat cone metric, the holonomy
group of M̄ is H(M̄), if H(M̄) is a subgroup of GT , then T can
be defined on M .

Proof Let M̃ be the universal covering space of M̄ . We equip M̃
with the flat cone metric and immerse M̃ onto the plane R2. Then
the deck transformation group is a subgroup of the holonomy group
H(M̄). If T is a tessellation on R2, it is invariant under the action of
G. H(M̄) is a subgroup of G, so is the deck transformation group.
Therefore, T is invariant under all the deck transformations of M̃ ,
and so T can be defined on M̄ . Q.E.D.

For a mesh with a flat cone metric, homotopic loops have the same
holonomy. It can be further proved that homologic loops have the
same holonomy. But only homotopy loops have the same generalized
holonomy. For the sake of simplicity, we don’t introduce the concept
of homology.
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