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Abstract—Skeleton tracking is a useful and popular application
of Kinect. However, it cannot provide accurate reconstructions
for complex motions, especially in the presence of occlusion. This
paper proposes a new 3-D motion recovery method based on low-
rank matrix analysis to correct invalid or corrupted motions.
We address this problem by representing a motion sequence as
a matrix, and introducing a convex low-rank matrix recovery
model, which fixes erroneous entries and finds the correct
low-rank matrix by minimizing nuclear norm and `1-norm
of constituent clean motion and error matrices. Experimental
results show that our method recovers the corrupted skeleton
joints, achieving accurate and smooth reconstructions even for
complicated motions.

Index Terms—Skeleton, Kinect, occlusion, motion recovery, low
rank

I. INTRODUCTION

3-D analysis of human motions has always been an ac-
tive research topic in computer graphics and computer vi-
sion, involving a variety of research problems such as 3-
D reconstruction [1], pose estimation [2], [3], [4], motion
capture [5], [6], skeleton tracking [7], 3D model deformation
[8], etc. Previous motion capture systems are challenging to
implement, because they are expensive, difficult to maintain,
and in need of abundant manual operations. Microsoft Kinect
has shed a light on low-cost human motion capture. With its
advantages of being convenient and inexpensive [9], Kinect
gains its popularity in numerous works [10], and therefore has
been widely used in the motion capture field [11]. However,
skeletons captured by Kinect suffer from severe joint drifting
and motion jitter, especially in the case of self-occlusion or
object occlusion [12]. The accuracy of joint estimation is more
satisfactory in controlled scenarios with simple non-occluded
motions, such as standing upright, walking forward, which
limits its wide applicability.

It is of great interest to researchers to reconstruct human
motion via different methods. Many work focus on human
motion estimation from RGB images. Menier et al. [13]
estimate skeletal poses from foreground silhouettes. Li et al.
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[14] introduce sparse representation to estimate 3-D poses
and camera motions. With the rapid development of neural
networks and deep learning, some works bring deep learning
models into motion estimation. Toshev et al. [3] propose
a Deep Neural Networks (DNNs) to estimate human poses
from RGB images by formulating it as a joint regression
problem. Ouyang et al. [4] present a deep model to solve
the pose estimation problem by utilizing information sources
of mixture type, appearance score and deformation. Since
the advent of depth cameras such as Kinect, pose estimation
can be better addressed through depth images. Shotton et al.
[15] introduce body part classification (BPC) and offset joint
regression (OJR) algorithms to estimate human poses with
robustness and efficiency from a single depth image. Wei et al.
[5] develop an automatic motion capture system by integrating
depth data, full-body geometry, etc. together using a single
depth camera. However, these methods have limitations in
recovering skeletons with occlusions. Saito et al. [7] solve
this problem by finding subspace of valid motion, projecting
corrupted skeletons into the motion manifold and finally
rebuilding valid motion through inverse projection. However,
this method needs a time-consuming training procedure.

3-D motion recovery from corrupted skeletons is challeng-
ing. The key is to impose proper priors to make the problem
well-posed. As skeleton sequence has high temporal correla-
tion, the motion should lie in a low-dimensional subspace. In
this paper, we propose a new 3-D motion recovery method
based on low rank matrix analysis. The skeleton sequence
is rearranged into a (corrupted) matrix that contains errors
and noise. Then, the clean motion matrix is recovered from
the corrupted matrix by minimizing the nuclear norm of the
clean matrix and the `1-norm of the error matrix, exploiting
the characteristics of both matrices. Through this method, the
corrupted matrix that has high percentages of noise and errors
can be corrected. Experimental results show that our method
successfully corrects the corrupted motion captured by Kinect
v2.0, especially for complex motions.

The remainder of this paper is organized as follows. Section
II gives the proposed 3-D motion recovery method. Validation
experiments are presented in Section III, and the paper is
concluded in Section IV.



II. THE PROPOSED METHOD

A. Matrix Recovery Model

The human skeleton is represented by a collection of
joints, which are easily influenced by noises and have drifting
problems. Given the skeleton sequence captured by Kinect
v2.0, an observation matrix D ∈ Rm×n is formed by stacking
the 3-D positions of all the joints together, where m is 3×
the number of frames of the input skeleton sequence and n
is the number of joints (21 in our case, ignoring the finger
joints). Let A ∈ Rm×n be the recovered clean matrix, and let
E ∈ Rm×n be the error matrix. We have

D = A+ E. (1)

Classical works in the literature suggest that human motions
lie in a subspace therefore can be effectively represented in
lower dimensions [16]. This inspires us to focus on the time
coherence of skeleton data in a motion sequence–the rank of
the clean matrix A should be low. To verify this, as shown
in Fig.1, the rank of our input skeleton matrix for Dancing
sequence is 5 using singular value decomposition, validating
our low-rank hypothesis, which forms the basis of our matrix
recovery model.
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Fig. 1. Singular value decomposition of input skeleton matrix for sequence
dancing.

Given that the latent matrix A is low-rank and the error
matrix E is sparse, the problem can be formulated as

min rank(A) + γ ‖E‖0
s.t. D = A+ E,

(2)

where rank(A) is the rank of matrix A, ‖E‖0 is the `0 norm of
matrix E, i.e. the number of non-zero entries in the matrix and
γ > 0 is a weighting parameter that balance the importance
of low-rank matrix A and sparsity of matrix E.

Since the problem in Eq.(2) is NP-hard, we use the nuclear
norm of A as an approximate substitute for rank(A), and the
`1 norm as an approximate substitute for `0 norm of matrix
E [17]. Thus we obtain a semidefinite programing problem:

min ‖A‖∗ + λ ‖E‖1
s.t. D = A+ E,

(3)

where λ > 0 is a weighting parameter, ‖E‖1 =
∑
ij |Eij |,

‖A‖∗ = tr((AAT)1/2) =
∑
i σi, where σi’s are singular

values of matrix A. Theoretical considerations in [18] suggest
that λ must be of the form C√

max(m,n)
, where C is a constant,

typically set to unity. Additionally, we evaluate the influence of
the weighting parameter λ in our experiments, which achieves
the balance between accuracy and smoothness of the recovered
skeletons. The value of λ is chosen small enough to threshold
away the noise (by keeping the variance low to obtain high
stability), and large enough not to overshrink the original
matrix (by keeping the bias low to ensure flexible motion).

B. Augmented Lagrangian Algorithm

Algorithm 1 :ALM Algorithm
1: Input: observed skeleton matrix D ∈ Rm×n

2: Initialize: E0 = 0, Y0 = 0, µ > 0 maxIter = 1000
3: while not converged do
4: Ak + 1 =M1/µ(D − Ek +

1
µ
Yk);

5: Ek + 1 = Sλ/µ(D −Ak + 1 +
1
µ
Yk);

6: Yk + 1 = Yk + µ(D −Ak + 1 − Ek + 1);
7: µk+1 = ρµk, ρ > 1;
8: end while
9: Output: A, E

There are many algorithms to solve this minimization prob-
lem, e.g.,singular value thresholding (SVT) [19], augmented
lagrangian method (ALM) [20], and accelerated proximate
gradient algorithm (APG) [21]. In this paper, we choose
augmented lagrangian method (ALM) in an iterative frame-
work, due to its high efficiency and accuracy. The augmented
Lagrangian of Eq.(3) is

L(A,E, Y, µ) = ‖A‖∗ + λ ‖E‖1 + 〈Y,D −A− E〉

+
µ

2
‖D −A− E‖2F ,

(4)

where ‖M‖F represents the Frobenious norm of a matrix
M , Y is the Lagrangian multiplier, and 〈·, ·〉 denotes the
inner product of two matrices considered as long vectors.
Then, we solve two optimizations: minA L(A,E, Y ) and
minE L(A,E, Y ) respectively.

arg min
A
L(A,E, Y ) = Sλ/µ(D −A+

1

µ
Y ) (5)

arg min
E

L(A,E, Y ) = M1/µ(D − E +
1

µ
Y ), (6)

where Sδ(x) = sgn(x) max(|x| − δ, 0) denotes a shrinkage
operator. Similarly, Mδ(X) = USδ(Λ)V denotes a singular
value thresholding operator.

To address these minimization problems, we use a classical
approach: First we minimize function L(A,E, Y ) with A
fixed, then we similarly minimize L(A,E, Y ) with E fixed,
and finally we update the Lagrange multiplier matrix Y . The
ALM algorithm is summarized in Algorithm 1.



III. EXPERIMENTAL RESULTS

We use real captured Kinect skeletons of 21-joints as our
input D ∈ Rm×n, which suffers from severe joint drifting
and motion jitter. Four motion sequences are tested: marking
time (463 frames), crossing and bending (1245 frames), facing
aside (421 frames) and dancing (1432 frames). Detailed demo
video is presented in the supplementary material.

First, we test the proposed method on a simple non-occluded
motion sequence: marking time (the first sequence in our
demo video). As shown in Fig.2 and the video, the input
skeleton has joint drifting in some frames where the person
lifts a leg or waves arms. The recovered skeleton has detected
these disturbances and rectified the noisy skeleton as shown
in Fig.2 (c). In the sequence of crossing and bending (the
second sequence in our demo video), human motions are more
complicated and have higher percentages of self-occlusion. As
shown in Fig.3 , the Kinect skeleton is obviously corrupted,
while our method reconstructs a valid skeleton structure.
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Fig. 2. Estimated skeleton of frame 171 in marking-time sequence. (a)
captured color image, (b) Kinect skeleton, (c) recovered skeleton by our
method.
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Fig. 3. Estimated skeleton of frame 1178 in crossing and bending sequence.
(a) captured color image, (b) Kinect skeleton, (c) recovered skeleton by our
method.

Then, we evaluate our method on more complex motion
sequences containing various human movements and high per-
centages of self-occlusion: facing aside and dancing (the third
and fourth sequence in the demo video). Note that in Fig.4, in
order to present skeletons more legibly, we additionally render
the skeleton in a side view, since the outstretched arms tend
to be elusive in a single frame in the front view. From the
side view, we can more obviously observe that the occluded

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

   

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

  

  

 

 

 

  

 

(a)             (b)            (c)            (d)          (e) 

(f)               (g)          (h)              (i)         (j) 

(k)                (l)           (m)            (n)          (o) 

Fig. 4. Estimated skeleton of frame 91, 104 and 148 in facing aside sequence.
Frame 104: (a)(f)(k) captured color image, (b)(g)(l) Kinect skeleton in the
front view, (c)(h)(m) Kinect skeleton in the side view, (d)(i)(n) recovered
skeleton by our method in the front view, (e)(j)(o) recovered skeleton by our
method in the side view.

arm is corrected estimated. The captured Kinect skeleton has
been corrupted largely as shown in Fig.4(b)(c)(g)(h)(l)(m)
and Fig.5(d)-(f). This shows that our method gets reasonable
skeletons for these complex motions.

We test the running time of every input sequence on a
desktop with an Intel Core i5-4690K CPU and 8GB RAM.
The results are reported in Table I. Our method is fast and has
the potential to achieve real-time online skeleton recovery.

TABLE I
RUNNING TIME

Skeleton Sequence Number of Frames Running Time(s)
Facing Aside 241 0.6190
Marking Time 463 0.8001

Crossing and Bending 1245 1.1470
Dancing 1423 1.3740
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Fig. 5. Estimated skeleton of frame 141, 166 and 244 in dancnig sequence.
(a) - (c) captured color image, (d) - (f) Kinect skeleton, (g) - (i) recovered
skeleton by our method.

IV. CONCLUSION

This paper proposes a novel approach to motion reconstruc-
tion and skeleton recovery via low-rank matrix analysis. We
exploit the time coherence in a skeleton sequence which is for-
mulated as a low-rank configuration in a mathematical model.
Matrix recovery method shows its efficiency in addressing the
skeleton recovery problem. An ALM algorithm is devised to
solve the optimization problem. We evaluate our method on
real skeletons captured by Kinect v2.0, which contain severe
errors. Experimental results show that our method accurately
recovers high quality skeletons from the invalid corrupted
motion data in high efficiency.

Similar to the algorithm of Kinect, our method does not
guarantee the invariance of bone lengths. One can obtain the
motion capture result with changeless bone length using an
IK (inverse kinematics) algorithm based on our recovered
skeletons [22]. In the future work, we will perform the low-
rank matrix recovery on a graph to address this problem.
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